Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys
نویسندگان
چکیده
The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell-Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic.
منابع مشابه
Modeling the brittle–ductile transition in ferritic steels: dislocation simulations
We present a model for the brittle–ductile transition in ferritic steels based on two dimensional discrete dislocation simulations of crack-tip plasticity. The sum of elastic fields of the crack and the emitted dislocations defines an elasto–plastic crack field. Effects of crack-tip blunting of the macrocrack are included in the simulations. The plastic zone characteristics are found to be in a...
متن کاملMultiscale modeling of the brittle to ductile transition
A recently introduced method of crack representation as a distribution of three-dimensional Volterra dislocations is used in conjunction with two-dimensional dislocation dynamics simulations to study the brittle to ductile transition behavior of Ferritic Steels. The crack-tip plasticity zone is represented as an array of discrete dislocations emitted from crack-tip sources. The dislocations shi...
متن کاملSuper-tough Steel for Bridges and Other Applications
Addition of titanium (Ti) to ASTM A710 Grade B Cu-precipitation-strengthened steel significantly increases the impact absorbed fracture energy and reduces the ductile-to-brittle transition temperature. The effect of Ti correlates with the reduction of the amount of pearlite in the ferritic microstructure. A thorough study of the mechanical properties of Ti-modified A 710-B steel is presented.
متن کاملDynamic and Quasi-Static Tensile Properties of Structural S400 Steel
The study of mechanical behavior of the structural steel S400 under quasi- static and dynamic loading has been the subject of this investigation. In oder to obtain different stress - triaxiality conditions the specimens were notched with 1, 1.5, 2 and 3.5 mm notch radius. The results of fractography show as the velocity of tension increases, ductility reduces and a ductile-brittle transition oc...
متن کاملInfluence of Texture on Impact Toughness of Ferritic Fe-20Cr-5Al Oxide Dispersion Strengthened Steel
Fe-based oxide dispersion strengthened (ODS) steels are oriented to applications where high operating temperatures and good corrosion resistance is paramount. However, their use is compromised by their fracture toughness, which is lower than other competing ferritic-martenstic steels. In addition, the route required in manufacturing these alloys generates texture in the material, which induces ...
متن کامل